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Abstract. Hydrological modeling in large mountainous catchments faces challenges due to the complex interplay of snowmelt,

glacier dynamics, and groundwater contributions, which introduce significant uncertainty in streamflow predictions. This study

introduces a Bayesian multi-objective parameter estimation framework to reduce predictive streamflow uncertainty in large

mountainous catchments by integrating streamflow likelihood with three auxiliary likelihoods, analyzed individually: snow

cover area (SCA), glacier mass balance (GMB), and isotopic composition (I). The well-established Generalized Likelihood5

Uncertainty Estimation (GLUE) method is employed to investigate trade-offs among these likelihoods, providing a detailed

assessment of their distinct and combined contributions to hydrological model performance across various flow regimes. The

Representative Elementary Watershed-Tracer aided version (THREW-T) hydrological model applied in this work captures

both rapid surface dynamics and slow-response subsurface processes, offering a comprehensive representation of streamflow

variability.10

Results indicate that isotopic likelihood plays a critical role in reducing low-flow uncertainty by effectively constraining

baseflow and groundwater-surface water interactions, particularly during winter and early spring when these processes dom-

inate. Conversely, while SCA and GMB likelihoods demonstrate some effectiveness in capturing rapid processes such as

snowmelt and glacier melt, their influence is most pronounced during the melting season, with limited impact on reducing over-

all streamflow uncertainty. This seasonality is reflected in sharpness values, which measure how much uncertainty is reduced,15

with isotopic likelihood achieving the highest peak of 0.34 in late winter, whereas SCA and GMB reach maximum sharpness

values of 0.19 and 0.16, respectively, during the melting season. Pareto plots further reveal the synergies and trade-offs as-

sociated with each likelihood, underscoring the importance of adopting a multi-objective calibration approach that accounts

for seasonal variations in hydrological processes. In addition, the results highlight the critical role of seasonality in shaping

the effectiveness of auxiliary likelihoods, emphasizing their potential to improve predictive accuracy and reduce uncertainty in20

hydrological models.
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1 Introduction

Accurate hydrological modeling in large mountainous catchments remains particularly challenging due to the inherent com-

plexity of these systems (Gupta et al., 2008). The interplay of multiple water sources, such as snowmelt, glacier dynamics, and25

groundwater, combined with substantial spatio-temporal variability in streamflow generation, often results in equifinality and

significant uncertainty in predictions (e.g., Asong et al., 2020; Shuai et al., 2022; Dalla Torre et al., 2024). These complexi-

ties call for advanced modeling approaches capable of improving our understanding of streamflow variability and supporting

effective water resource management (Panchanathan et al., 2024).

Recent advancements in hydrological modeling have addressed these demands by focusing on the integration of auxiliary30

variables, such as snow cover area, glacier mass balance, and environmental tracers (e.g., stable oxygen isotopes, δ18O), to

improve model calibration and reduce parameter uncertainty (Di Marco et al., 2021; Nan et al., 2021; Mohammadi et al., 2023).

These variables provide critical insights into cryospheric and subsurface processes, enabling models to better capture hydro-

logical responses that drive streamflow variability during periods of low flow (Panchanathan et al., 2024). Incorporating such

data improves the representation of specific model components and guides the evaluation of the model, ultimately enhancing35

reliability and reducing equifinality (Birkel et al., 2014; Tetzlaff et al., 2014). Tracer-aided modeling has proven particularly

effective in disentangling hydrological processes and identifying critical contributions from snowmelt and groundwater un-

der varying conditions (Nan et al., 2021). Bayesian approaches have also been applied to explicitly address equifinality and

uncertainty in hydrological modeling in various mountain basins (e.g., Yang et al., 2007; Andraos, 2024).

Nonetheless, several challenges remain. Few studies have systematically compared the relative effectiveness of auxiliary40

datasets - such as snow cover area, glacier mass balance, and isotopic tracers - in reducing model uncertainty and equifinality

across different flow regimes (Finger et al., 2011; Xu et al., 2012; Nan and Tian, 2024). While some studies have explored

the role of individual datasets, such as isotopic tracers (Nan and Tian, 2024) or glacier mass balance (Finger et al., 2011), a

unified comparison of their respective contributions within a single modeling framework remains absent. This is particularly

true for low-flow conditions, which are often dominated by slow-response processes such as groundwater contributions and45

subsurface flow dynamics (Betterle and Bellin, 2024). Moreover, the potential for these datasets to improve the representation

of hydrological processes under varying seasonal conditions remains largely unexplored. Similarly, while previous work has

explored the Contributions of Runoff Components (CRC) to total streamflow (e.g., subsurface flow, rainfall runoff, snowmelt,

and glacier melt) (Stahl et al., 2008), a comprehensive understanding of how these components interact to influence streamflow

dynamics under different conditions remains insufficiently constrained by multi-source datasets. Current Bayesian frameworks,50

while powerful, often fail to fully leverage the complementary strengths of auxiliary datasets, particularly in large mountainous

catchments where complex cryospheric and subsurface interactions drive streamflow dynamics (Zhang et al., 2018; Chang

et al., 2024).

This study addresses these gaps by systematically evaluating the role of snow cover area, glacier mass balance, and iso-

topic tracers in reducing model uncertainty and equifinality within a fully Bayesian framework. The analysis is applied to the55

Yarlung Tsangpo River Basin, a large mountainous catchment characterized by complex cryospheric and subsurface interac-
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tions, where streamflow variability is influenced by snowmelt, glacier dynamics, and groundwater contributions. Specifically,

we aim to investigate the complementary roles of these auxiliary datasets in constraining hydrological models and improving

the understanding of streamflow variability across different flow regimes. Special emphasis is placed on low-flow periods,

during which isotopic data have proven to be particularly effective in reducing uncertainty by providing stronger constraints on60

baseflow contributions and groundwater-surface water interactions (Rodgers et al., 2005). The study explores how multi-source

calibration approaches can address uncertainty and trade-offs in model performance across various hydrological conditions.

Additionally, this work aims to quantify the influence of each dataset on the contributions of runoff components, shedding

light on the interplay between subsurface flow, rainfall runoff, snowmelt, and glacier melt in total streamflow generation. By

analyzing how different datasets affect these runoff components, the study seeks to enhance the representation of hydrological65

processes and improve our understanding of how various sources contribute to streamflow variability. These insights will be

particularly relevant for water resource management strategies in mountainous regions, where low-flow dynamics are critical

for drought mitigation (Wu et al., 2023) and the long-term sustainability of water resources (Haro-Monteagudo et al., 2020).

To address these objectives, the paper is organized as follows: the adopted tracer-aided hydrological model, the study area,

and the Bayesian framework are described in Sect. 2. Sect. 3 presents the results, including parameter distributions, uncertainty70

analysis, and flow regime-specific improvements. Sect. 4 discusses the implications of the findings, while Sect. 5 provides

concluding remarks and future research directions.

2 Materials and methods

2.1 Study area and data

The Yarlung Tsangpo River (YTR) basin was selected as the focus area of this study (Figure 2). The YTR basin is the upstream75

part of the Brahamaputra River basin, located on the southern Tibetan Plateau (TP). The YTR basin, as one of the longest rivers

originating from the TP, extends in the range of 27-32°N and 82-97°E with an elevation extent of 2900-6900 m above sea level.

The outlet hydrological station of the YTR basin is the Nuxia station, with a drainage area of approximately 2× 105km2.

There are four hydrological stations along the mainstream of YTR: Nuxia, Yangcun, Nugesha and Lazi, from downstream

to upstream. The mean annual precipitation in the YTR basin is around 500 mm, which is dominated by the South Asian80

monsoon in the Indian Ocean hydrosphere-atmosphere system resulting an obvious wet season during June to September. The

mean annual temperature is -0.2°C, leading to widely distributed snow and glacier, covering around 16.3% and 1.5% of the

basin.

Datasets of meteorological input, topography, underlying surface, streamflow and isotope were collected to establish the

model. The 30 m resolution digital elevation model (DEM) were downloaded from the Geospatial Data Cloud (https://www.gscloud.cn).85

Daily precipitation and temperature were extracted from the 0.1° China Meteorological Forcing Dataset (CMFD, Yang and He

(2019)). The daily potential evapotranspiration were obtained from the 1.0° reanalysis dataset ERA5_Land (Muñoz-Sabater

et al. (2021)). For the underlying conditions, the MODIS leaf area index (LAI) product MOD15A2H (Myneni et al. (2015)) and

the normalized difference vegetation index (NDVI) product MOD13A3 (Didan (2015)) were used to represent the vegetation
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conditions, and the Marmonized World Soil Database (HWSD, He (2019)) was used to estimate the soil property parameters.90

For the cryospheric elements, the Tibetan Plateau Snow Cover Extent (TPSCE) product (Chen et al. (2018)) and the second

glacier inventory dataset of China (Liu (2012)) were adopted to denote the snow and glacier cover areas. The 0.5° yearly glacier

elevation change data developed by Hugonnet et al. (2021) was used to validate the simulated glacier mass balance.

Grab samples of stream water were collected in 2005 at four stations to analyze the isotope composition (δ18O) to validate

the tracer simulation. The outputs of the Scripps Global Spectral Model with an isotope incorporated (isoGSM, Yoshimura95

et al. (2008)) with 1.875° resolution were extracted to represent the spatiotemporal variation of the isotope composition in

precipitation. The bias assessment and correction procedure was conducted based on measurement precipitation isotope data

in our previous work, and the corrected isoGSM produced by Nan et al. (2022) was adopted as the input data.

2.2 The tracer-aided hydrological model

A distributed tracer-aided cryospheric-hydrological model, Tsinghua Representative Elementary Watershed-Tracer aided ver-100

sion (THREW-T) developed by Tian et al. (2006) and Nan et al. (2021) was adopted to simulate the hydrological, cryospheric

and isotopic processes in the YTR basin (Figure 1). The THREW-T model uses the representative watershed method (REW)

for spatial discretization, which divides the whole catchment into REWs based on DEM data. Two vertical layers including

eight subzones (i.e., surface layer including vegetation zone, bare zone, sub-stream network zone, snow-covered zone, glacier-

covered zone and main channel reach zone; subsurface layer including unsaturated zone and saturated zone) are defined for105

each REW-based on the underlying surface type. The YTR basin was divided into 297 REWs with average area of 694 km2 in

this study. More detailed descriptions of REW method could be found in Reggiani et al. (1999) and Tian et al. (2006).

Figure 1. Schematic representation of the THREW-T model

The cryospheric module was incorporated into the model to simulate the evolutions of snowpack and glacier. The total

precipitation was partitioned into liquid (rainfall) and solid precipitation (snowfall), according to a temperature threshold set
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as 0°C. For the simulation of snowpack, the snow water equivalent of each REW was updated based on the snowfall and110

the snowmelt, which was calculated using the degree-day factor method. The snow cover area (SCA) was determined by the

snow cover depletion curve (Fassnacht et al. (2016)) and then compared with the satellite observation data. For the simulation

of glacier, each REW was further divided into several elevation bands with an interval of 200m, to represent the variation

in temperature and precipitation along the altitudinal profile. The glacier within the intersection of each REW and elevation

band was regarded as the representative unit for glacier simulation. The processes related to glacier evolution in the model115

included the snow accumulation and snowmelt over glaciers, the turnover of snow to ice, and the ice melt. The ice melt was

also calculated using the temperature index method but with a different degree-day factor from snowmelt. The volume of the

glacier was updated based on the mass balance equation and was transferred to the glacier cover area based on a scale equation

(Grinsted (2013)). The output of the glacier simulation included the glacier mass balance (GMB) and the glacier cover area,

and the simulated GMB would be compared with the measurement data. More details of the cryospheric module can be found120

in Nan et al. (2021) and Cui et al. (2023).

The tracer module was incorporated into the model to simulate the isotope composition in multiple water bodies, which

characterized the isotopic variations during water mixture and phase change processes. The isotope fractionation during water

evaporation and snowmelt processes was simulated by the Rayleigh equation (Hindshaw et al. (2011)). The glacier meltwater

was assumed to have a constant isotope composition, which was more depleted than the average local precipitation isotope by125

an offset parameter (Nan et al. (2023)). The isotope compositions in each simulation unit were calculated based on the complete

mixing assumption, meaning that the tracer concentration homogeneity within a unit was achieved during a simulation time

step (Nan et al. (2023)). Forced by the precipitation isotope input, the model can simulate the isotope composition of all the

water bodies, including river water, groundwater and snowpack, and the simulated isotope composition of river water would

be compared with the observation data. More details of the tracer module are provided in Nan et al. (2021).130

The Contributions of Runoff Components (CRC) were analyzed to better understand the influence of multiple datasets

on hydrological simulations. The THREW-T model quantified the runoff components based on the definition that combines

water sources and runoff generation pathways (He et al. (2021)). Specifically, the runoff was first divided into surface runoff

and subsurface runoff (baseflow) based on the runoff generation pathway. The surface runoff was further divided into three

components induced by different water sources: rainfall, snowmelt, and glacier melt. Consequently, the total runoff was divided135

into four components: subsurface runoff, rainfall surface runoff, snowmelt surface runoff, and glacier melt surface runoff.
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Figure 2. The location and topography of (a) the Tibetan Plateau and (b) the Yarlung Tsangpo River basin
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Symbol Range Units Description

nt 0–0.2 – Manning roughness coefficient for hillslope

WM 0–10 m Tension water storage capacity used to calculate the sat-

uration area

B 0–1 – Shape coefficient used to calculate the saturation area

Gatr 0–10 – Coefficient representing spatial heterogeneity of ex-

change term between t-zone and r-zone

KKA 0–6 – Exponential coefficient to calculate the subsurface

runoff outflow rate

KKD 0–0.5 – Linear coefficient to calculate the subsurface runoff out-

flow rate

DDFS 0–10 mm°C-1d-1 Degree-day factor for snowmelt

DDFG 0–10 mm°C-1d-1 Degree-day factor for glacier melt

LL 0–1 – Coefficient to transfer snow water equivalent to snow

cover area using snow depletion curve

T0 -5 – 5 °C Temperature threshold above which snow and glacier

melting occurs

α 0–1 – Coefficient in the Muskingum method for runoff con-

centration calculation

β 0–1 – The proportion to the α coefficient in the Muskingum

method for runoff concentration calculation
Table 1. Parameter table with descriptions, ranges, and units.
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2.3 Multi-objective Parameter Estimation

The uncertainty estimation of model parameters was performed using the Generalized Likelihood Uncertainty Estimation

(GLUE) methodology (Beven, 2006). GLUE employs Monte Carlo simulations to generate a large ensemble of model realiza-

tions, where each realization corresponds to a specific parameter set associated with a likelihood measure. Unlike traditional140

optimization methods that focus on identifying a single best parameter set, GLUE emphasizes equifinality by retaining an

ensemble of acceptable parameterizations (Efstratiadis and Koutsoyiannis, 2010; Brazier et al., 2000), thus acknowledging

that multiple parameter sets can produce similarly good simulations, which is particularly important when modeling complex

hydrological systems where uncertainties in processes and inputs can lead to varied but equally plausible outcomes (Di Marco

et al., 2021).145

The selection of likelihood measures and thresholds to distinguish behavioral from non-behavioral simulations is inherently

subjective and problem-dependent (Blasone et al., 2008; Jin et al., 2010). In this study, the parameter space was sampled using

Latin Hypercube Sampling (LHS) (McKay et al., 1979), assuming a uniform distribution for all parameters listed in Table 1. In

the absence of prior information, all parameter sets were initially considered equally probable, ensuring non-informative priors

(e.g., Gan et al., 2018; Teweldebrhan et al., 2018). The impact of this uniformity assumption on posterior results was evaluated150

through sensitivity analyses.

A total of 25,000 parameter sets were generated and evaluated using a likelihood measure to quantify model performance.

Behavioral simulations were identified based on a predefined threshold, the value of which is provided in the results sec-

tion. Non-behavioral simulations were assigned a likelihood of zero, while the likelihood values of retained simulations were

rescaled to sum to one, forming a posterior probability density function for the model parameters.155

Predictive uncertainty of outputs, such as streamflow, was assessed by ranking behavioral simulations according to their

rescaled likelihoods. The empirical cumulative distribution, weighted by these likelihoods, was used to define uncertainty

bounds by excluding the lower and upper 5th percentiles (Teweldebrhan et al., 2018; Franks et al., 1998).

The Nash-Sutcliffe Efficiency Index (NSE) (Nash and Sutcliffe, 1970) was selected as the likelihood measure for stream-

flow, snow-covered area (SCA), and isotopic composition (I) (Lamontagne and Barber, 2020; Araya et al., 2023), while the160

Volumetric Deviation Efficiency (VE) (He et al., 2018) was adopted for glacier mass balance (GMB). These two metrics were

chosen to reflect both dynamic performance and cumulative accuracy across key hydrological variables.

The NSE was used as the likelihood measure for streamflow, snow-covered area, and isotopic composition. Its formulation

is provided for completeness:

NSEX = 1−
∑N

t=1 (Xsim(t)−Xobs(t))
2

∑N
t=1 (Xobs(t)−Xobs,mean)2

, (1)165

where X represents the variable of interest, Xsim(t) and Xobs(t) are the simulated and observed values at time step t,

Xobs,mean is the mean of the observed values, and N is the number of time steps.
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For glacier mass balance (GMB), the Volumetric Deviation Efficiency (VE) was deemed more appropriate as it directly

evaluates the accuracy of the simulated mean relative to the observed mean, aligning better with the cumulative nature of

GMB:170

V EGMB = 1− GMBmean,sim−GMBmean,obs

GMBmean,obs
, (2)

where GMBmean,sim and GMBmean,obs are the simulated and observed mean glacier mass balances, respectively.

The multi-objective parameter estimation followed an informal Bayesian framework. The streamflow likelihood, LH(Q|pi),

was first used to constrain the model parameters, forming the prior likelihood distribution. Auxiliary variables (X) were then

incorporated to produce a posterior likelihood distribution (cLH), defined as:175

cLH(pi|Q,X) =
1
C
·LH(Q|pi) ·LH(X|pi), (3)

where pi represents a parameter set, LH(Q|pi) and LH(X|pi) are the likelihoods for streamflow and auxiliary variables,

respectively, and C is a normalization constant ensuring:
∫

cLH(pi|Q,X)dpi = 1. (4)

In the absence of explicit guidelines for auxiliary datasets, except for streamflow, a threshold of NSE > 0 and V E > 0,180

commonly used as minimal performance criteria, was systematically applied to all target variables, including streamflow (Q),

snow-covered area (SCA), glacier mass balance (GMB), and isotopic composition (I). The use of NSE > 0 for streamflow

ensures consistency across all metrics, even though stricter thresholds are typically recommended to ensure the reliability

of streamflow simulations (Moriasi et al., 2007). Furthermore, following Di Marco et al. (2021); Ma et al. (2024), the 75th

percentile was chosen as the cutoff for both the prior and posterior distributions to select parameter sets, ensuring a consistent185

and robust identification of the most likely parameters while balancing model accuracy and diversity.

2.4 Metrics for Quantifying Uncertainty

To assess the added value of multi-objective model conditioning compared to single-objective approaches based solely on

streamflow observations, we utilized two uncertainty metrics: the first, known as the containing ratio (CR), evaluates the ability

of the simulated prediction intervals to capture the observed values and reads as follows (e.g., Teweldebrhan et al. (2018); Jin190

et al. (2010)):

CR =
1
N

N∑

t=1

Γ(Qobs(t);Qsim0.05(t),Qsim0.95(t)) , (5)

where Qsim0.05(t) and Qsim0.95(t) indicate the lower and upper bounds of the simulated 90% streamflow prediction interval,

respectively, while Γ returns a value of 1 if the observation falls within the prediction interval and 0 otherwise. A higher

CR value indicates that the prediction intervals are better at capturing observed values, reflecting improved reliability of the195
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model outputs. Conversely, a lower CR suggests that the prediction intervals fail to encompass the observed data as effectively,

indicating potential deficiencies in the model’s calibration or input data.

The second metric, the so-called sharpness (SH), is a measure that quantifies the reduction in prediction uncertainty achieved

through the integration of additional information and reads as follows:

SH = 1− cLH(pi |Q,X)
LH(Q | pi)

. (6)200

A higher SH value signifies that the prediction intervals are narrower, implying reduced uncertainty in the model’s predictions

and a more precise representation of the streamflow dynamics. On the other hand, a lower SH value suggests broader prediction

intervals, indicative of higher uncertainty or less precise modeling.

It is worth noticing that in an ideal scenario, a perfectly constrained model would achieve CR and SH values close to 1.

In practice, this would imply that the prediction intervals consistently capture observed values (CR = 1) and that the model205

uncertainty diminishes to the point where the simulated output closely aligns with the observations, indicating that there is no

uncertainty in the predictions.

3 Results

3.1 Behavioral simulations

For each run of the overall Monte Carlo sample, we computed likelihood values for streamflow (NSEQ) and additional210

metrics, including the Snow Cover Area likelihood (NSESCA), Glacial Mass Balance likelihood (V EGMB), and Isotope

likelihood (NSEI ). The relationships between streamflow likelihood and these additional metrics are presented in Figure

3, where the Pareto fronts (red markers) represent solutions that optimally balance trade-offs between conflicting objectives.

The dominated solutions (gray points) illustrate the broader solution space, providing insights into the variability of model

performance across different calibration scenarios. The blue lines indicate the minimum performance thresholds for selecting215

the behavioral solutions.

The Snow Cover Area likelihood (NSESCA) exhibits a strong positive relationship with streamflow likelihood (NSEQ). As

shown in Figure 3.a, the Pareto front points (red markers) are concentrated in the upper-right quadrant of the plot, indicating

that high streamflow likelihood values can coexist with high NSESCA values. This suggests strong compatibility between

these two objectives, meaning that improving streamflow performance does not inherently result in a reduction in NSESCA.220

The dominated solutions (gray points) show a wider spread across the plot, including regions where both NSEQ and NSESCA

values are low. This indicates variability in model performance when considering different parameter sets. The clustering of

Pareto-optimal solutions in the high-likelihood region reflects the shared role of snow processes in regulating both streamflow

and snow cover dynamics suggest that it is possible to improve NSESCA without significant trade-offs when calibrating the

model to optimize streamflow performance.225

The Glacial Mass Balance likelihood (V EGMB) shows a slightly different behavior, as illustrated in Figure 3.b. Although

high streamflow likelihood values are still associated with moderate to high V EGMB values on the Pareto front, the verti-
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cal spread of the red markers is more pronounced. This indicates a weaker synergy between these two metrics compared to

NSESCA. While some Pareto-optimal solutions achieve high likelihoods for both NSEQ and V EGMB , others show inter-

mediate V EGMB values despite high NSEQ performance. This pattern suggests the presence of moderate trade-offs, where230

accurately capturing glacial mass dynamics might be compromised to achieve better streamflow performance.

The Isotope likelihood (NSEI ) exhibits the most significant trade-offs among the three metrics, as illustrated in Figure 3.c.

The Pareto front (red markers) is notably dispersed, with even the highest-performing solutions for NSEQ rarely exceeding

an NSEI value of 0.4. This indicates a high degree of independence and conflict between these two metrics. The complexity

of this relationship is further emphasized by the dominated solutions (gray points), where many configurations achieve high235

NSEQ values but fail to yield satisfactory NSEI values.
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Figure 3. Pareto fronts (red markers) of streamflow likelihood (NSEQ) and likelihood metrics for (a) Snow Cover Area likelihood

(NSESCA), (b) Glacial Mass Balance likelihood (V EGMB), and (c) Isotope likelihood (NSEI ). The thin blue lines represent the per-

formance thresholds defined for the multi-objective behavioral selection: NSEQ = 0, NSESCA = 0, NSEI = 0, and V EGMB = 0. The

dominated solutions are shown as gray points.

3.2 Prior and posterior parameter distributions

Figure 4 shows the prior (black lines) and posterior distributions for each model parameter, conditioned on snow cover area

likelihood (red lines), glacier mass balance likelihood (green lines), and isotope data (blue lines). A visual inspection of these

distributions indicates that each dataset provides meaningful information to constrain parameters specifically linked to the240

underlying physical processes it represents.

For example, the parameters DDFS and LL (Figures 4.g and 4.i), which control the snow cover area transfer and snowmelt

processes, show a stronger response when conditioned on the likelihood of SCA, highlighting their direct influence on snow

dynamics. Similarly, the parameter DDFG (Figure 4.h), which governs glacier melt processes, exhibits tighter posterior con-

straints when conditioned on the GMB likelihood, reflecting its strong connection to ice melt dynamics. Interestingly, the245
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parameter DDFS shows a contrasting response under the GMB likelihood, with the posterior distribution shifting in the oppo-

site direction compared to the SCA posterior distribution.

A similar observation can be made for the isotopic likelihood, which effectively constrains parameters related to subsurface

flow and runoff partitioning. For example, the parameter KKA (Figure 4.e), which defines the subsurface runoff outflow rate,

shows noticeable convergence when conditioned on isotope data. Other parameters, such as the tension water storage capacity250

WM (Figure 4.b) and the shape coefficient B (Figure 4.c), which influence the calculation of the saturation area, also exhibit

tighter posterior distributions, underscoring the capacity of isotope data to inform processes related to water storage and release

in the subsurface. Furthermore, the runoff concentration coefficients α and β (Figures 4.k and 4.l) are better estimated with the

inclusion of isotopic data with respect to the likelihoods of SCA and GMB.

An interesting case is the temperature threshold parameter T0 (Figure 4.j), which defines the threshold above which snow255

and glacier melting occur. As expected, the Glacier Mass Balance likelihood has the strongest influence on the posterior

distribution of T0 due to its direct relationship with glacier melt processes. However, both the SCA and the isotopic likelihoods

can narrow the posterior distribution of T0, albeit to a lesser extent, indicating that the snow cover and the isotopic data provide

complementary constraints on this parameter.

In contrast, the posterior distribution of the parameter Gatr shows minimal variation compared to the previous (Figure 4. d),260

aligning with expectations, as Gatr reflects spatial heterogeneity, which reduces its sensitivity to individual physical processes.

It is also worth noting that for the parameter nt, not only does none of the data sets (SCA, GMB, or I) significantly constrain the

posterior distribution compared to the prior, but the isotopic likelihood appears counterproductive in this case, as it increases

the uncertainty by broadening the posterior distribution and reducing its peak.

3.3 Streamflow simulation uncertainty range265

The prior and posterior likelihood distributions, as described in Section (2), were here used to estimate the 5th–95th percentile

prediction uncertainty ranges for daily streamflow simulations. Figure (5) illustrates this predictive uncertainty ranges com-

pared to observed streamflow data recorded at the Nuxia gauging station. The prior predictive uncertainty, represented by dark

grey bands, corresponds to the hydrological model conditioned solely on observed streamflow data. In contrast, the posterior

uncertainty ranges, depicted by lighter bands, were obtained by integrating additional datasets: snow cover area, glacier mass270

balance, and isotopic data.

The uncertainty bands proved to be overall effective in capturing observed streamflow values. Specifically, the containing

ratio (CR) metric indicates that the prior distribution encloses approximately 96% of the observed streamflow values (CR =

0.959). Posterior distributions derived from isotopic likelihoods exhibit a slightly reduced CR of 0.921, while those based on

SCA and GMB yield CR values of 0.947 and 0.960, respectively. These findings suggest that, while SCA and GMB maintain275

similar levels of coverage compared to the prior, they do not lead to a substantial reduction in predictive reliability. Conversely,

the posterior conditioned on isotopic data demonstrates a modest decrease in coverage.

Visual inspection of Figure (5) indicates no reductions in uncertainty bands for higher streamflow values across all scenarios.

On the contrary, the most pronounced contraction of predictive uncertainty occurs during low-flow periods when the model is
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Figure 4. Parameter distributions obtained by conditioning the model with streamflow observations recorded at the Nuxia station (prior pdf,

black line line) and by combining streamflow measures with: i) covered area (posterior pdf, blue line); ii) glacier mass (posterior pdf, green

line); and iii) isotope concentration (posterior pdf, red line)

conditioned with isotopic data (Figure 5.e), whereas conditioning with SCA and GMB does not produce comparable reductions,280

Figures (5.a) and (5.c) respectively. Besides, Flow Duration Curves (FDCs), presented in the right panels of Figure (5), provide

further insights into the impact of these datasets across different flow regimes. For SCA and GMB (Figure 5.b and 5.d),

the posterior uncertainty ranges are generally comparable to or slightly narrower than the prior for medium-flow regimes.

During low-flow conditions, however, the posterior bands are wider than the prior, indicating that incorporating SCA and GMB

datasets introduces additional variability in streamflow predictions during baseflow-dominated periods, likely due to challenges285

in accurately constraining slow-response hydrological processes. For medium- and high-flow regimes, these datasets appear to

modestly refine or maintain predictive uncertainty. In contrast, conditioning the model with isotopic data (Figure 5.f) results in

a significant reduction in uncertainty, particularly during low-flow conditions. The posterior uncertainty range is substantially

narrower than the prior, suggesting that isotopic data provide robust constraints on processes governing baseflow and subsurface

contributions.290
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3.4 Runoff component analysis

Figure 6 shows the CRC produced by different behavioral parameter sets. The boxplots illustrate the contributions of the four

runoff components under the prior parameter set and the posterior parameter sets constrained by snow cover area, glacier mass

balance, and isotope likelihoods. The contributions of subsurface runoff and rainfall surface runoff are similar, both accounting

for approximately 40–45% of the total runoff (Figure 6.a and 6.b). In contrast, snowmelt surface runoff and glacier melt surface295

runoff contribute approximately 8% and 6%, respectively (Figure 6.c and 6.d).

The differences in the average CRCs among the parameter sets are relatively small, with variations generally below 3% for

all four components. However, the inferences drawn from the different datasets reveal interesting patterns regarding uncertainty

reduction. The prior leads to a wider distribution of contributions across all runoff components, reflecting higher uncertainty in

the model predictions. Posterior parameter sets constrained by specific datasets help reduce this uncertainty to varying extents.300

Constraining the model with the likelihood of glacier mass balance leads to a significant reduction in the uncertainty of glacier

melt surface runoff (Figure 6.d), as evidenced by the tighter interquartile range and fewer outliers in the box plot. This indicates

that the GMB simulation provides strong constraints on glacier-related processes. In contrast, the snow cover area does not lead

to a significant reduction in the uncertainty of snowmelt surface runoff (Figure 6.c). This is because SCA data only constrains

the area of snow but does not provide much constraint on the volume of snow, as the snow area-volume relation is determined by305

a calibrated parameter. Notably, the isotope likelihood demonstrates a broader impact on reducing uncertainty across multiple

runoff components. The boxplots for I show narrower distributions for subsurface runoff, rainfall surface runoff, and snowmelt

surface runoff, indicating that isotope simulation valuable constraints on both surface and subsurface hydrological processes.

The influence of each dataset on CRC uncertainties can be further illustrated by the result of sensitivity analysis, which eval-

uates the extent to which each performance metric to the contribution of each runoff component. To this end, Figure 7 presents310

the sensitivity of model performance metrics to the contributions of different runoff components, namely subsurface runoff

(Css), rainfall surface runoff (Csr), snowmelt surface runoff (Csm), and glacier melt surface runoff (Csgm). The sensitivity

analysis evaluates the extent to which each performance metric—streamflow NSE(Q), snow cover area NSE(SCA), glacier

mass balance V E(GMB), and isotope NSE(I)—is influenced by the relative contribution of each runoff component to total

streamflow.315

The results indicate that streamflow performance NSE(Q) and snow cover area performance NSE(SCA) respond differ-

ently to variations in the contribution of individual runoff components. While NSE(SCA) remains largely insensitive to CRC

variations, showing consistently high values across a wide range of runoff component contributions, NSE(Q) exhibits a more

noticeable response. The scatterplots reveal that although streamflow performance remains relatively high (NSE > 0.8) even

when CRC deviates from its optimal value, there is a clear tendency for behavioral solutions to cluster towards an optimal CRC,320

indicating a degree of sensitivity. In contrast, glacier mass balance performance V E(GMB) shows strong sensitivity to glacier

melt runoff Csgm, with V E(GMB) dropping significantly when Csgm exceeds approximately 10%. The most pronounced

sensitivity is observed in the isotope performance metric NSE(I), which responds to variations in multiple runoff components.

The scatterplots reveal that NSE(I) declines markedly when the contributions of subsurface runoff Css, rainfall runoff Csr, or
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snowmelt runoff Csm deviate from optimal values. In particular, NSE(I) decreases significantly from 0.4 to below 0.2 when325

the contributions of these components shift, indicating that isotopic simulations are much more sensitive to changes in runoff

contributions compared to other performance metrics. This sensitivity underscores the importance of accurately quantifying

the partitioning of different runoff components to achieve reliable isotope-based model predictions. Overall, the analysis high-

lights that V E(GMB) simulations are primarily sensitive to glacier melt runoff, whereas isotope-based simulations NSE(I)

are more sensitive to a broader range of runoff components.330
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Figure 5. The 5–95% percentile prior, conditioned solely on streamflow, and posterior predictive uncertainty ranges for streamflow, calculated

under different conditions: snow cover area (SCA), glacier mass balance (GMB), and isotopes (I). Left panels: daily streamflow time series

for the period 2010–2015; right panels: flow duration curves for the entire period 2001–2015. Streamflow data are presented in dimensionless

form due to dissemination restrictions imposed by the data provider.
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Figure 6. Boxplots showing the variability in the contributions of different surface runoff components under prior estimates conditioned

solely on streamflow (Q) and posterior estimates conditioned on additional datasets: snow cover area (SCA), glacier mass balance (GMB),

and isotopic data (I). Panel (a): Subsurface runoff; panel (b): rainfall surface runoff; panel (c): Snowmelt surface runoff; panel (d): glacier

melt runoff.
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runoff (Csm), and glacier melt surface runoff (Csgm). Each point represents a behavioral solution from the multi-objective calibration.
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4 Discussion

Overall, the results presented in Section 3 highlight the differential value of auxiliary datasets in hydrological model calibration.

While SCA and GMB provide insights into snow and glacier dynamics, they appear less effective in reducing streamflow

uncertainty. Not only do the results prove that integrating multiple data sources within the Bayesian framework influences both

streamflow simulation uncertainties and the computation of CRC components, but they also show varying effects depending335

on the type of dataset and runoff component considered, as discussed below.

4.1 Reducing Streamflow Model Uncertainty Using a Bayesian framework

The results of this study differ in another perspective from those of Di Marco et al. (2021), who observed a consistent rela-

tionship in snow-dominated basins between an increased likelihood of streamflow and snow cover area (SCA), alongside a

reduction in streamflow uncertainty. In contrast, our findings do not show a comparable narrowing of streamflow uncertainty340

bands when applying the Bayesian filtering approach with snow and glacier parameters (Figure 5). This discrepancy suggests

that the coupling between snow and glacier dynamics and streamflow performance is not straightforward, particularly in larger

or more heterogeneous catchments.

As noted by Ruelland (2024), the potential for snow data to enhance streamflow simulation consistency and robustness

depends on various factors, including hydro-climatic conditions, spatial variability, the modeling framework, and the accuracy345

of snow cover data (Hao et al., 2022) and input forcing (Raleigh et al., 2015). Factors such as catchment complexity, spatial

heterogeneity, and structural uncertainties in the model—stemming from unresolved hydrological processes or oversimplified

dynamics—likely contribute to the persistence of wide uncertainty ranges. In contrast, isotopic likelihoods effectively constrain

the parameter space, resulting in improved simulation performance and reduced uncertainty bands, particularly during low-flow

conditions. This finding confirms the ability of isotopic data to capture key hydrological processes, such as groundwater-surface350

water mixing and subsurface flow dynamics, which are especially influential during low-flow periods (Jasechko and Taylor,

2015), where seasonality plays a critical role (Bierkens et al., 2001; Birkel et al., 2009).

The influence of hydrological processes seasonality on the effectiveness of likelihoods is demonstrated by the sharpness

polar plot (Figure 8). This figure illustrates the sharpness ranges for posterior likelihoods conditioned on SCA, GMB, and I

datasets throughout the year. A maximum SH value of 0.34 was observed for isotopes on March 16, 2008, while the maximum355

SH values for SCA and GMB were 0.19 on April 30, 2009, and 0.16 on June 10, 2009, respectively. These results highlight

the effectiveness of isotopic likelihoods during winter and early spring, with sharpness values remaining consistently narrow

and never dropping below zero, when baseflow and subsurface hydrological processes dominate. In contrast, SCA and GMB

likelihoods achieve their sharpness peaks during spring and early summer, coinciding with periods of rapid snowmelt and

glacier runoff. This pattern underscores the importance of integrating SCA and GMB likelihoods for capturing high-flow360

dynamics and highlights the need to further develop these datasets to enhance their effectiveness in constraining streamflow

uncertainty during these critical periods.
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The results underscore the strengths and limitations of the Bayesian approach in capturing both rapid surface dynamics and

slower subsurface processes. While the sharpness values reflect its ability to constrain parameter uncertainty across different

hydrological processes, alternative approaches, such as multi-objective weighted calibration, may further enhance streamflow365

simulation accuracy (He et al., 2019). However, the sensitivity of model accuracy and uncertainty analysis to weight selec-

tion necessitates careful consideration during implementation (Tong et al., 2021, 2022). Additionally, the interplay between

the likelihoods highlights the metric-dependent nature of parameter uncertainty reduction, underscoring the importance of in-

tegrating multiple metrics for robust calibration, owing to the strong dependence of calibration outcomes on the evaluation

metric adopted (e.g., Fenicia et al., 2018; Majone et al., 2022).370

These results also point to the need for improved coupling and integration of individual model components. Such integra-

tion would allow for better exploitation of the strengths of each dataset and enhance the Bayesian framework’s capability to

constrain parameter ranges across diverse hydrological conditions. By addressing these structural connections and leveraging

synergies between complementary metrics, the Bayesian framework’s potential to optimize parameter calibration and improve

predictive accuracy can be fully realized.375

4.2 Runoff Component Uncertainty

The GMB dataset effectively reduces uncertainty in glacier melt surface runoff simulations (Figure 6.d), emphasizing its

value for improving model constraints in glacier-dominated systems. This finding aligns with previous studies highlighting

the importance of incorporating GMB data to enhance streamflow predictions in such catchments (Stahl et al., 2008; O’Neel

et al., 2014; Yang et al., 2024). However, this reduction in uncertainty does not always translate into improved streamflow380

predictions at the basin scale. The effectiveness of the Bayesian framework in reducing uncertainties depends on the proportion

of runoff attributed to glacier melt processes. Consequently, even when glacier-related dynamics are well constrained by GMB

data, their contribution to reducing overall streamflow prediction uncertainty may be limited in basins where other processes

dominate. This underscores the importance of considering basin scale and dominant runoff processes when selecting datasets

for hydrological modeling.385

Similarly, SCA datasets provide valuable constraints on snowmelt surface runoff (Figure 6.c) but have a more limited im-

pact on reducing streamflow uncertainty. This may be due to the spatial and temporal resolution limitations of SCA datasets

(Di Marco et al., 2020), or because the snowmelt contribution to total runoff is relatively minor in large basins compared to

other components, such as subsurface runoff and rainfall surface runoff. Furthermore, uncertainties in the timing and rate of

snowmelt, which are critical for runoff generation, may not be fully captured by remotely sensed SCA data (Andreas Juer-390

gen Dietz and Dech, 2012). This limitation is particularly relevant in basins with complex snow dynamics, where snow cover

depletion varies significantly across different elevation bands and time periods (Molotch and Margulis, 2008).

In contrast, isotopic data stand out for their ability to reduce uncertainty across multiple runoff components, particularly dur-

ing low-flow conditions. By tracing water sources and pathways, isotopic tracers provide critical insights into subsurface and

groundwater contributions, which are difficult to capture with traditional datasets (Birkel et al., 2015). Isotopic tracers, such as395

oxygen-18 (δ18O) and deuterium (D), are widely used to distinguish between recent precipitation, snowmelt, and groundwater
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contributions to streamflow, improving the calibration of hydrological models (Jasechko, 2019). The results suggest that incor-

porating isotopic data into hydrological models can help reduce uncertainties related to water source contributions and flow

pathways, particularly in catchments with complex surface-subsurface interactions.

These differences in the influence of datasets underscore the importance of selecting appropriate data sources based on the400

specific hydrological processes and uncertainties that need to be addressed in a given catchment. For example, GMB data

should be prioritized in glacier-fed basins to improve predictions of glacier melt runoff (Huss and Hock, 2015), whereas

isotope data can provide valuable constraints on multiple runoff components, particularly in catchments with diverse flow

generation processes (Rodgers et al., 2005; Birkel et al., 2011). The integration of multi-source datasets can help reduce model

uncertainties more effectively than relying on a single dataset (Beven, 2006), resulting in more robust predictions of water405

availability and streamflow variability under changing climatic conditions (Borriero et al., 2023).

4.3 Limitations

This study systematically evaluates the value of snow cover area, glacier mass balance, and isotopes in reducing model uncer-

tainties. Results highlight the critical role of isotope data in improving low-flow simulations and runoff component separation.

However, several limitations persist. First, while streamflow simulations achieve NSE values up to 0.9, peak flows are consis-410

tently underestimated, likely due to inaccuracies in precipitation forcing data (Jiang et al., 2022; Xu et al., 2017). Metrics for

SCA and isotope simulations remain around 0.5, indicating potential for further optimization. Second, as this analysis is based

on a single case study in a specific region, its broader applicability is uncertain. Unlike prior studies (Di Marco et al., 2021;

Tong et al., 2021), snow and glacier datasets did not significantly enhance model performance here, suggesting the need to

clarify the conditions under which such data prove most beneficial.415

Despite these challenges, the study underscores the importance of employing multiple datasets to constrain hydrological

models. Although snow and glacier datasets alone may not substantially improve streamflow simulations, they are essential for

ensuring model reliability in capturing key processes. Isotope data, in particular, effectively constrain surface and subsurface

runoff separation due to the low variability in groundwater isotopic composition (Nan et al., 2024; McGuire and McDonnell,

2006), reducing baseflow uncertainties and enhancing model robustness.420

5 Conclusions

This study provides new insights into reducing uncertainty and equifinality in the hydrological modeling of large mountainous

catchments by integrating multiple auxiliary datasets within a Bayesian framework. By systematically comparing the con-

tributions of snow cover area (SCA), glacier mass balance (GMB), and isotopic tracers, we demonstrate how these datasets

distinctly improve model performance across various flow regimes.425

A critical conclusion drawn from this research is the unique advantage of isotopic data in reducing model uncertainty

during low-flow periods. The isotopic likelihood has shown to be more effective in constraining baseflow contributions and

groundwater-surface water interactions, resulting in narrower uncertainty ranges for streamflow predictions under low-flow

21

https://doi.org/10.5194/egusphere-2025-664
Preprint. Discussion started: 17 March 2025
c© Author(s) 2025. CC BY 4.0 License.



conditions. This finding underscores the critical role of isotopic tracers in improving the representation of slow-response hy-

drological processes, which are essential for the mitigation of drought and sustainable management of water resources in moun-430

tainous regions. In contrast, the SCA and GMB datasets were found to be more effective in capturing rapid surface dynamics,

such as snowmelt and glacier melt processes. However, their contributions to reducing streamflow uncertainty were limited,

particularly during low-flow conditions. This discrepancy highlights the need for multi-objective calibration approaches that

balance the trade-offs between rapid surface responses and slow subsurface processes.

Our results also reveal the differential impact of each dataset on the contributions of runoff components. The glacier mass435

balance likelihood significantly reduces uncertainty in glacier melt surface runoff, whereas isotopic data provide broader con-

straints across multiple runoff components, including subsurface runoff, rainfall surface runoff, and snowmelt surface runoff.

These differences emphasize the importance of selecting appropriate datasets based on the dominant hydrological processes in

a given catchment.

The study further highlights the limitations of current Bayesian frameworks in fully leveraging the complementary strengths440

of auxiliary datasets. While Bayesian approaches are effective in reducing parameter uncertainty and improving model calibra-

tion, the persistent wide uncertainty ranges for streamflow predictions indicate the need for improved coupling and integration

of individual model components. Enhancing these structural connections within the modeling framework could allow for better

exploitation of multi-source datasets, ultimately improving predictive accuracy across diverse hydrological conditions.

In conclusion, our findings stress the importance of incorporating multi-source datasets in hydrological modeling to achieve445

robust performance across different flow regimes. The integration of isotopic tracers, snow cover, and glacier mass balance data

within a Bayesian framework offers a promising pathway to reduce uncertainty and enhance the understanding of streamflow

variability in large mountainous catchments. Future research should focus on developing more advanced coupling methods

that account for the complex interplay between cryospheric and subsurface processes, as well as exploring the potential of

multi-objective weighted calibration approaches to further improve model reliability.450
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Figure 8. Polar plots showing the daily sharpness band computed from the maximum and minimum sharpness values across the years

2010–2015. The shaded regions represent the range of sharpness variability for each day of the year, while the solid black line indicates

the reference level at zero sharpness. The subplots illustrate the sharpness calculated under different conditioning: cLH(pi|Q,SCA) (a),

cLH(pi|Q,GMB) (b), and cLH(pi|Q,I) (c).
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